Thursday, February 20, 2025

GaNDr: Power Loop Measurement and Optimization

In a half-bridge configuration, the power loop is the path from the DC bus capacitor positive terminal to the output switch node and back to the capacitor negative terminal. This is the path of high dI/dt, passing through both FETs in the half-bridge. It's important to keep this loop as small as possible, to reduce the amount of parasitic inductance interacting with the high dI/dt.

This applies to any half-bridge, but it's especially important for GaNFETs, where the switching event can be on the order of nanoseconds. They're capable of switching this fast due to their very low gate charge and input capacitance, but they still have a significant output capacitance, COSS, that needs to be hard-switched. During a switching event, this forms an underdamped LC oscillator with the power loop inductance and leads to overshoot and ringing.

It's a little hard to predict the loop inductance, although admittedly I didn't even really try. There are ways to ballpark it based on the board geometry, or use a 2D field solver like FEMM to get an estimate. A 3D field solver could probably get pretty close. But nothing beats a direct measurement on the real PCB. So I just assembled one phase of the GaNDr Rev1 PCB for a test:

Nevermind the black wire hack...

Since I'm interested in stuff on the nanosecond time scale, I wanted to use my 5GHz-bandwidth sampling scope for this measurement. But the inputs only go up to ±1V, so directly probing a 50V node with unknown overshoot would be bad. Luckily, the cheapest way to make a high-bandwidth probe is just to make a voltage divider with a physically small resistor and a 50Ω coaxial cable.

Quick and dirty ≈67:1 high-bandwidth probe.

It also matters where the probe is attached. I soldered both the resistor and the probe ground (just the coax shield) to pads near the low-side FET. This excludes all the inductance except what's physically inside the FET. The measured voltage is, as close as possible, VDS of the low-side FET. And here is the measured switching transient:

It is...not great. The overshoot with a 32V input and 1Ω gate resistors is nearly 100%. That does not bode well for 50V operation with 100V parts, and can't be good for efficiency or EMI. It's possible to slow down the rise time by increasing the gate resistance, thus reducing the amount of energy in the transient. But that should be done last, after exhausting all other reasonable methods for reducing the power loop inductance.

Since I now have the ringing frequency, it's possible to calculate the power loop inductance using the COSS datasheet value of 1nF (per FET):

L = 1 C OSS ( 2 π f ) 2 = 1 2.0 nF ( 2 π 160 MHz ) 2 = 0.50 nH

This really isn't much inductance, but it's apparently enough to store sufficient energy during the transient to make a high-Q oscillator with COSS.

Some of the loop inductance is from the DC bus capacitors themselves. I probably should have checked this earlier, since this is usually well-characterized by the manufacturer. The Samsung CL32E475KCIVPNE capacitors used here have the following AC characteristic curves:

At frequencies above about 2MHz, they're really more inductors than they are capacitors: the impedance vs. frequency has a slope of +1 on a log-log plot. The effective inductance at 160MHz is around 0.30nH. But, there are six in parallel. Ideally, this would divide down to 0.050nH, but they may not share the load equally based on their placement. I think they contribute a significant amount of inductance, but not the majority.

Still, it would be nice to reduce the capacitor parasitic inductance if possible. Since the switching transient only involves COSS, which is only on the order of 1nF, maybe smaller and faster capacitors would be better? For example, the 10nF Samsung CL05B103KC5VPNC in 0402 stays mostly capacitive all the way up to 100MHz:

However, being physically smaller also increases the impedance overall, such that the effective inductance at 160MHz is still around 0.30nH. The advantage is that I could fit many more in parallel, to divide down the total inductance more. In reality, the big 1210 capacitors are still very much necessary for filtering the 125kHz PWM frequency, so the solution is probably to try to fit some of the 10nF 0402s on in parallel with the existing six 1210s.

An easy place to put them is where the VDC bus bar solder areas used to be, between the 1210 caps and the high-side FETs:

For each high-side FET, three can be arranged so that their positive terminals are directly adjacent to the drain pads. The negative terminal can be sent to the power ground plane on the first inner layer with a via-in-pad. This also has the advantage of shortening the power loop considerably, at least for the high-frequency switching transient. The only real disadvantage is losing the option for a VDC bus bar, which realistically shouldn't be necessary for the average power levels here.

A riskier move would be to drop in four more 10nF 0402s between the FETs:

The drain pads of the high-side FET (VDC) align with the source pads of the low-side FET (GND), so it's very tempting to bridge the gap with an 0402 capacitor. I even tried this on the physical board, by scratching off some solder mask:

Even with the ugly attachment, this did show a significant improvement, with the overshoot dropping from 94% to 65% and the frequency increasing from 160MHz to 210MHz:

This does seem like it would provide the shortest possible power loop, but an important difference between the soldered-on test and the actual layout is that there is still a mostly solid switch node (output) plane beneath the capacitors as-tested. It's like having a seventh PCB layer. In actuality, that plane gets cut if the capacitors are placed there, changing the power loop from a thin vertical sandwich to multiple horizontal loops, which might very well have higher inductance.

This configuration, with capacitors between the FETs, is actually discussed in the EPC layout guidelines. In order to get back to a thin vertical sandwich power loop, the switch node plane, rather than GND, should be on the first inner layer. But if I fully swap SW and GND layers, the loop sandwich to the outer capacitors becomes thicker, potentially cutting off those capacitors with much higher outer loop inductance.

I decided to try just inserting a small SW plane on the first inner layer, and only between the FETs. The rest of the first and second inner layers remains as GND to hopefully preserve some of the outer capacitor loop performance. And since I'm indecisive, I only did this on one half of the board for the next revision. That'll let me A/B test it against the more normal layout. I expect both to have much more interesting transients with composites of multiple frequencies, so it might be trickier to analyze. We'll see when the Rev 2 boards arrive.

Saturday, January 25, 2025

GaNDr: Motor Drive in the GaNFET Era

It's been a while since I've attempted a new motor drive design, the last one being TinyCross's dual-motor 50V/100A drive about six years ago. I still really like that design, and those drives have worked well for TinyCross so far. But one of my favorite pastimes is looking for new components that might change how I would build something. And in the last six years, there's been an interesting development that I'm curious to explore: the GaNFET is now mainstream. 

While they've been commercially available for a while, they're now both technically and economically viable as an alternative to silicon MOSFETs in certain power ranges, and have been adopted in many new consumer electronic devices. They are also becoming available in more conventional packages, though GaNFET purists would probably still use the bare-die versions for lowest parasitic inductance. Supporting components (mainly gate drivers), documentation, and device models are also now mature and widely available.

Of interest for this project are the EPC2302 and the brand new EPC2361 in 3x5 QFN. These are packaged GaNFETs, vs. the bare-die BGA and LGA options that have been around for a while. Ideally, encapsulating them in a thin plastic package improves robustness without sacrificing too much performance. The package also still exposes the die on the top side for direct cooling.

GaNFETs excel in the Figure-of-Merit (FoM) of on-resistance multiplied by gate charge, RDS(on)·QG, which captures both the conducting and switching losses. Here they are on a 2D plot with some silicon MOSFETs for comparison, with curves of constant FoM shown (lower is better):

The current TinyCross FETs, FDMT80080DC, can't really compete anymore. (I still love them for their pulsed current rating of 1453A, though.) The modern field of 60-80V silicon MOSFETs has significantly better FoM and also tends to publish specifications for lower gate drive voltages besides the standard 10V. The NVMFS5C604NL operated at VGS = 4.5V is especially remarkable. But the EPC GaNFETs still easily win on FoM, and they are 100V parts with half the surface area.

The extremely low QG means GaNFETs can be switched much faster than silicon MOSFETs. An EPC2302 half-bridge with a suitable layout and gate driver should have no problem operating at 100kHz PWM, or even higher. This reduces the need for large electrolytic capacitors on the DC bus, since the ripple current will be much lower. This is probably the largest contribution to space savings, even though the FETs themselves are also physically smaller.

Although I'm not space-constrained on TinyCross, shrinking a power stage is always a fun project. I arbitrarily set a limit of the size of a deck of cards, with the same specification as the previous design (dual motor, 50V and 100A peak). Here's what the resulting layout looks like:

It's considerably smaller than the current TinyCross drive, even with the logic and power consolidated onto one board. There are half as many electrolytic capacitors, with more ceramic capacitors filling in at high frequencies. Optional 2mm bus bars help take some of the load off the PCB copper. The board can be mounted to a heat sink base with six isolated M2 screws located in the middle of each FET group for even mounting pressure. And the wires all exit horizontally, probably through grommets in the seam between the aluminum base and a 3D-printed cover.

This is also a six-layer PCB, which further helps with layout. Six layer boards are now pretty fast and cheap thanks with JLCPCB, so there's not much reason to stick to four layers even for hobby motor drives anymore. The power stage layout follows EPC's recommended structure pretty closely, with the return path on the two inner layers closest to the FETs to minimize the dI/dt loop area:

I did not follow the gate drive recommendations as strictly, since I need a lot of space for the gate drivers themselves. I am using isolated half-bridge drivers, and remarkably there are at least two pin-compatible parts from different manufacturers that could work. The Skyworks Si82E39x looks like the most promising option, with a 4V UVLO option and sub-10ns rise/fall times. It's not even that expensive, at around $4ea. The ADuM4221 from Analog Devices could also work, though. Although I have the driver on the opposite side of the board, I did try to keep the gate drive traces as short as possible:

The gate drive return paths from the switch node (high-side) and negative plane (low-side) are also pretty direct. Will that be good enough? I don't really know - I don't have a 3D field solver. I'll have to wait for the boards. Ideally, with such low gate charge and fast drivers, it should be possible to run PWM frequencies above 100kHz and take the dead time down to around 50ns (less than 1%). Here's what the switching waveforms look like in an LTSpice simulation with the EPC device models:

However, this is just a guess for the loop inductance, so I won't really know how fast it can go until I get it on a scope. But what is the huge current spike on both FETs (shoot-through) during the high-side turn-on? I thought GaNFETs didn't have reverse recovery time? Well, I think it's just the Coss of the low-side FETs getting charged. Even though there's no body diode, there is still parasitic capacitance in the 1-2nF (per FET) range that has to get hard-switched at 50V. At these switching speeds, that requires a lot of current (for a very short period of time). If it turns out to be a problem, the gate drives will have to be artificially slowed down with extra gate resistance.

Another interesting quirk of GaNFETs is present in the LTSpice sim: during the deadtime, the low-side FETs do reverse-conduct, but at a voltage of around 2.25V, significantly higher than the body diode voltage across a silicon MOSFET. This partially eats into the power savings of a GaNFET design, but the more critical problem is what happens with a bootstrapped high-side driver. If the output is down at -2.25V, or even lower, even a crappy bootstrap diode won't drop enough from +5V to prevent the high-side VGS from exceeding 6V, the absolute maximum for these gates.

There are several ways to deal with this. Adding a resistor in series with the bootstrap diode creates low-pass filter with the bootstrap capacitor. A 10Ω resistor with a 0.1µF bootstrap capacitor has a time constant of 1µs, so a 50ns spike of +7V or so won't budge the voltage much. There is still a possibility that at very high duty cycle the average bootstrap charge voltage could exceed 6V, but I think you would run into other issues before that. For good measure, I also included a footprint for an optional 5.1V Zener diode across the bootstrap cap, which is another recommendation I saw.

Lastly, I included a couple footprints for small Schottky diodes in parallel with the low-side FETs. I can only fit something like an SMA or SOD128 package, which max out at 5A for 100V devices. But some have pulse ratings at or above 100A, and these are very short pulses. At those pulse ratings the voltage drop is quite high, but still significantly below 2.25V. The other interesting question is whether the parasitic inductance of the diode and its connection to the bridge will prevent any of the high current from making it to them in the first place. Only the scope will tell.

In order to take advantage of the 100kHz+ low-deadtime PWM, I also want to try out another relatively new part, an MCU from the STM32G4 series. These are the spiritual successor to the F3 series that I've used for so many motor drives. They have lots of analog features, including five (!) ADC converters, DACs, op-amps, and comparators. But the G4 also adds several new peripherals that are specifically well-suited to motor drives:

The high-resolution timer (HRTIM) can drive up to 12 PWM outputs with a resolution as small as 184ps. It's probably overkill, but it allows for close to 16-bit duty cycle resolution at 100kHz, and very accurate deadtime control. For example, part-to-part variation in the gate driver propagation delays could probably be compensated There's also a CORDIC engine for offloading trigonometric functions from the CPU. And there's a Filter Math Accelerator (FMAC) peripheral, which includes a dedicated hardware multiplier/accumulator and memory for accelerating FIR/IIR filter calculations without involving the CPU.

The need for extra computation might make more sense if you've noticed what's missing from this design: there are no inputs for motor position sensing. While I love the simplicity and robustness of TinyCross's optically-isolated virtual Hall sensors, it's nothing interesting in terms of brushless motor control. I did manage to run two instances of a lightweight flux observer in the background on the F3, but I never used it for driving the current control. I'm sure it would have worked at speed, but the main problem with sensorless control for TinyCross is getting starting torque on all four drive motors without them fighting each other.

One way to get the position of the motor before the flux observer converges is with High-Frequency Injection (HFI). The motors on TinyCross have an L/R time constant of around 1.5ms, so at frequencies above 1kHz they are mostly inductors. The inductance on each phase varies depending on the position of the rotor, since the permanent magnet flux changes where each phase's stator steel is on a non-linear B-H curve. That inductance change can be measured with a high-frequency signal on top of the normal drive voltage to derive the position. This is nothing new - it's been basically perfected in VESC - but it should be fun to try to implement with 100kHz+ PWM and the STM32G4's extra processing power.

That's it for now - more to come when there is physical hardware to look at.

Saturday, November 9, 2024

PCIe Deep Dive, Part 5: Flow Control

In Part 2, I described PCIe as a bi-directional memory bus extension and looked at some factors that contribute to the efficiency of the link. A PCIe 3.0 x4 link, with 8GT/s on each lane and an efficiency of around 90%, can support bidirectional data transfer of around 3.6GB/s. But this assumes both sides of the link can consume data that quickly. In reality, a PCIe function is subject to other constraints, like local memory access, that might limit the available data rate below the theoretical maximum. In this case, it's the job of the Data Link Layer's flow control mechanism to throttle the link partner so as not to overflow the receiver's buffers.

For a full-duplex serial interface, flow control can be as simple as two signals used to communicate readiness to receive data. In UART, for example, the RTS/CTS signals serve this purpose: A receiver de-asserts its RTS output when its buffer is full. A transmitter can only transmit when its CTS input is asserted. The RTS outputs of each receiver are crossed over to the CTS inputs of the other side's transmitter to enforce bidirectional flow control.

This works well for homogenous streams of data, but PCIe is packetized, and Transaction Layer Packets (TLPs) can have a variable amount of data in their payload. Additionally, packets representing write requests, read requests, and read completions need different handling. For example: If both sides are saturated with read requests, they need to be able to block further requests without also blocking completions of outstanding reads. So, a more sophisticated flow control system is necessary.

PCIe receivers implement six different buffers to accommodate different types of TLP. These are divided into three categories:

  1. Posted Requests (P). These are Request TLPs that don't require a Completion, such as memory writes. Once the TLP has been acknowledged, the requester assumes the remote memory will be written accordingly with the TLP data.
  2. Non-Posted Requests (NP). These are Request TLPs that do require a Completion, such as memory reads. Configuration reads and writes also fall into this category.
  3. Completions (CPL). These are Completion TLPs completing a Non-Posted Request, such as by returning data from a memory read.

For each of these categories, there is a Header buffer and a Data buffer. The Header buffer stores TLP header information, such as the address and size for memory reads and writes. The Data buffer stores TLP payload data. Separating the Header and Data buffers allows more flow control flexibility. A receiver can limit the number of TLPs received by using Header buffer flow control, or limit the amount of data received by using Data buffer flow control. In practice, both are used simultaneously depending on the external constraints of the PCIe function.

The PCIe specification only describes these buffers conceptually; it doesn't mandate any specific implementation. In an FPGA, the Data buffers could reasonably be built from block RAM, since they need to store several TLPs worth of payload data (order of KiB). The Header buffers only need to store (at most) four or five Double Words (DW = 32b) per TLP, so they could reasonably be built from distributed (LUT) RAM instead. A hypothetical Ultrascale+ implementation is shown below.

The Data buffers are built from two parallel BRAMs (4KiB each). This provides a R/W interface of 128b, matching the datapath width for a PCIe 3.0 x4 link. Conveniently, the unit of flow control for data is defined to be 4DW (128b), so each BRAM address is one unit of data. With 8KiB of total memory, these buffers could, for example, hold up to 16 TLPs worth of optimally-aligned data on a link with a Max. Payload Size of 512B. The capacity could be expanded by cascading more BRAMs or using URAMs, depending on the design requirements.

The Header buffers are built from LUTRAMs instead, with a depth of 64. Each entry represents the header of a single TLP, and may be associated with a block of data in the Data buffer. One header is also defined to be one unit of flow control. A single SLICEM (8 LUTs) can make a 64x7b simple dual-port LUTRAM. These can be parallelized up to any bit width, depending on how much of the header is actually used in the design. The buffer could also be made deeper if necessary, by using more LUTRAMs and MUXes.

For each of these buffers, the receiver issues credits to its link partner's transmitter in flow control units (4DW for Data buffers, one TLP header for Header buffers). The transmitter is only allowed to send a TLP if it has been issued enough credits (of the right type) for that TLP and its data. The receiver issues credits only up to the amount of space available in each of the buffers, updating the amount issued as the buffers are emptied by the Application Layer above.

Flow control credits are initialized and then updated using specific Data Link Layer Packets (DLLPs) for each category. These packets have a common 6B structure with an 8b counter for Header credits and a 12b counter for Data credits:

InitFC1- and InitFC2-type DLLPs are sent as part of a state machine during flow control initialization to issue the starting number of credits for each category (P, NP, Cpl). In the example above, the initial header and data credits could be 64 and 512 (or 63 and 511, to be safe). It's also possible for the receiver to grant "infinite" credits for a particular category of TLP by setting the initial value of HdrFC and/or DataFC to zero. In fact, for normal Root Complex or Endpoint operation, this is required for Completion credits. A Request is only transmitted if there is room in the local receiver buffers for its associated Completion.

UpdateFC-type DLLPs are sent periodically during normal operation to issue more credits to the link partner. Typically, credits are incremented as the Application Layer reads out of the associated buffer. In the case of an AXI Bridge, this could be when the AXI transaction is in progress. The values of HdrFC[7:0] and DataFC[11:0] are the total number of credits issued, mod 256 (header) or 4096 (data). For example, if the initial data credit was 511 and then 64DW were read out of the data buffer, the first UpdateFC value for DataFC could be 511 + 64/4 = 527.

This is mostly equivalent to transmitting the amount of buffer space available, but the head/tail index subtraction is left to the transmitter. It can compare the total credits issued to its local count of total credits consumed (mod 256 or 4096) to check whether there is enough space available for the next TLP. To prevent overflow, the receiver never issues more than 127 header credits or 2047 data credits beyond its current buffer head. (This also means that there's no reason to have header buffers larger than 128 entries, or data buffers larger than 2048x4DW = 32KiB.)

The receiver handles scheduling of UpdateFCs for all buffers that didn't advertise infinite credits during initialization. The PCIe 3.0 specification does have some rules for scheduling UpdateFCs immediately when the link partner's transmitter might be credit-starved, but otherwise there is only a maximum period requirement of 30-45μs. If the buffer has plenty of space, it can be better to space out updates for higher bus efficiency. (Starting with PCIe 6.0, the flow control interval and associated bus efficiency will become constant as part of FLIT mode, a nice simplification.)

A specific application may not actually need all six buffers to be the same size or type. For example, an NVMe host would barely need any Completion buffer space, since its role as a Requester is limited to modifying NVMe Controller Registers, usually one 32b access at a time. It's also unlikely to have any need for Non-Posted Requests with data. The vast majority of its receiver TLP traffic will be memory writes (PH/PD) and memory reads (NPH).

With a PCIe protocol analyzer, it's possible to see the flow control in action. The following is a trace recorded during a 512KiB NVMe read on a PCIe Gen3 x4 link with a Max. Payload Size of 512B. The host-side memory write throughput and DataFC available credits are plotted.

The whole transaction takes 1024 memory write request TLPs, each with 512B payload data. These occur over about 146μs, for an average throughput of about 3.6GB/s. The peak throughput is a little higher, though, at around 3.8GB/s. This means the PCIe link is slightly faster than the AXI bus, and as a result, DataFC credits are consumed faster than they are issued at first. Once the available credits drop below 32, there isn't enough room for a 512B TLP and the transmitter (on the NVMe SSD) is throttled. The link reaches steady-state operation at the AXI-limited throughput.

Depending on the typical access patterns of the application, a larger data buffer could help sustain peak throughput for the entire duration of a typical transfer. Sequential transfers might still hit the credit limit threshold, but it's also possible that there's enough NVMe overhead between them for the credits to recover. This sort of optimization, along with maximizing bus efficiency, would be required to squeeze out even more application-level throughput.

In summary, if PCIe is acting as a memory bus extension, PCIe flow control extends the local memory controller's backpressure mechanism across the link. For example, if an AXI memory bus can't keep up with writes, it will de-assert AWREADY and/or WREADY. The PCIe receiver can still accept memory write TLPs as long as it has room in its buffers, but it can't issue any new PH or PD credits. When the buffers are nearly full, this transfers the backpressure to the link partner.

Monday, January 22, 2024

PCIe Deep Dive, Part 4: LTSSM

The Link Training and Status State Machine (LTSSM) is a logic block that sits in the MAC layer of the PCIe stack. It configures the PHY and establishes the PCIe link by negotiating link width, speed, and equalization settings with the link partner. This is done primarily by exchanging Ordered Sets, easy-to-identify fixed-length packets of link configuration information transmitted on all lanes in parallel. The LTSSM must complete successfully before any real data can be exchanged over the PCIe link.

Although somewhat complex, the LTSSM is a normal logic state machine. The controller executes a specific set of actions based on the current state and its role as either a downstream-facing port (host/root complex) or upstream-facing port (device/endpoint). These actions might include:

  • Detecting the presence of receiver termination on its link partner.
  • Transmitting Ordered Sets with specific link configuration information.
  • Receiving Ordered Sets from its link partner.
  • Comparing the information in received Ordered Sets to transmitted Ordered Sets.
  • Counting Ordered Sets transmitted and/or received that meet specific requirements.
  • Tracking how much time has elapsed in the state (for timeouts).
  • Reading or writing bits in PCIe Configuration Space registers, for software interaction.
Each state also has conditions that trigger transitions to other states. All this is typically implemented in gate-level logic (HDL), not software, although there may be software hooks that can trigger state transitions manually. The top-level LTSSM diagram looks like this:


The entry point after a reset is the Detect state and the normal progression is through Detect, Polling, and Configuration, to the golden state of L0, the Link Up state where application data can be exchanged. This happens first at Gen1 speed (2.5GT/s). If both link partners support a higher speed, they can enter the Recovery state, change speeds, then return to L0 at the higher speed.

Each of these top-level states has a number of substates that define actions and conditions for transitioning between substates or moving to the next top-level state. The following sections detail the substates in the normal path from Detect to L0, including a speed change through Recovery. Not covered are side paths such as low-power states (L0s, L1, L2), since just the main path is complex enough for one post.

Detect


The Detect state is the only one that doesn't involve sending or receiving Ordered Sets. Its purpose is to periodically look for receiver termination, indicating the presence of a link partner. This is done with an implementation-specific analog mechanism built into the PHY.

Detect.Quiet

This is the entry point of the LTSSM after a reset and the reset point after many timeout or fault conditions. Software can also force the LTSSM back into this state to retrain the link. The transmitter is set to electrical idle. In PG239, this is done by setting the phy_txelecidle bit for each lane. The LTSSM stays in this state until 12ms have elapsed or the receiver detects that any lane has exited electrical idle (phy_rxelecidle goes low). Then, it will proceed to Detect.Active.

In the absence of a link partner, the LTSSM will cycle between Detect.Quiet and Detect.Active with a period of approximately 12ms. This period, as well as other timeouts in PCIe, are specified with a tolerance of (+50/-0)%, so it can really be anywhere from 12-18ms. This allows for efficient logic for counter comparisons. For example, with a PHY clock of 125MHz, a count of 2^17 is 1.049ms, so a single 6-input LUT attached to counter[22:17] can just wait for 6'd12 and that will be an accurate-enough 12ms timeout trigger.

Detect.Active

The transmitter for each lane attempts to detect receiver termination on that lane, indicating the presence of a link partner. This is done by measuring the time constant of the RC circuit created by the Tx AC-coupling capacitor and the Rx termination resistor. In PG239, the MAC sets the signal phy_txdetectrx and monitors the result in phy_rxstatus on each lane.

There are three possible outcomes:
  1. No receiver termination is detected on any lane. The LTSSM returns to Detect.Quiet.
  2. Receiver termination is detected on all lanes. The LTSSM proceeds to Polling on all lanes.
  3. Receiver termination is detected on some, but not all, lanes. In this case, the link partner may have fewer lanes. The transmitter waits 12ms, then repeats the receiver detection. If the result is the same, the LTSSM proceeds to Polling on only the detected lanes. Otherwise, it returns to Detect.Quiet.

Polling


In Polling and most other states, link partners exchange Ordered Sets, easy-to-identify fixed-length packets containing link configuration information. They are transmitted in parallel on all lanes that detected receiver termination, although the contents may very per-lane in some states. The most important Ordered Sets for training are Training Sequence 1 (TS1) and Training Sequence 2 (TS2), 16-symbol packets with the following layouts:

TS1 Ordered Set Structure

TS2 Ordered Set Structure

In the Link Number and Lane Number fields, a special symbol (PAD) is reserved for indicating that the field has not yet been configured. This symbol has a unique 8b/10b control code (K23.7) in Gen1/2, but is just defined as 8'hF7 in Gen3. Polling always happens at Gen1 speeds (2.5GT/s).

Polling.Active

The transmitter sends TS1s with PAD for the Link Number and Lane Number. The receiver listens for TS1s or TS2s from the link partner.

The LTSSM normally proceeds to Polling.Configuration when all of the following conditions are met:
  1. Software is not commanding a transition to Polling.Compliance via the Enter Compliance bit in the Link Control 2 register.
  2. At least 1024 TS1s have been transmitted.
  3. Eight consecutive TS1s or TS2s have been received with Link Number and Lane Number set to PAD on all lanes, and not requesting Polling.Compliance unless also requesting Loopback (an unusual corner case).
If the above three conditions are not met on all lanes after 24ms timeout, the LTSSM proceeds to Polling.Configuration anyway if at least one lane received the necessary TS1s and enough lanes to form a valid link have exited electrical idle. Otherwise, it will assume it's connected to a passive test load and go to Polling.Compliance, a substate used to test compliance with the PCIe PHY specification by transmitting known sequences.

Polling.Configuration

The transmitter sends TS2s with PAD for the Link Number and Lane Number. The receiver listens for TS2s (not TS1s) from the link partner.

The LTSSM normally proceeds to Configuration when all of the following conditions are met:
  1. At least 16 TS2s have been transmitted after receiving one TS2.
  2. Eight consecutive TS2s have been received with Link Number and Lane Number set to PAD on any lane.
Unlike in Polling.Active, transmitted TS are only counted after receiving at least one TS from the link partner. This mechanism acts as a synchronization gate to ensure that both link partners receive more than enough TS to clear the state, regardless of which entered the state first.

If the above two conditions are not met after a 48ms timeout, the LTSSM returns to Detect and starts over.

Configuration


The downstream-facing (host/root complex) port leads configuration, proposing link and lane numbers based on the available lanes. The upstream-facing (device/end-point) port echoes back configuration parameters, if they are accepted. The following diagram and description are from the point of view of the downstream-facing port.

Configuration.Linkwidth.Start

The (downstream-facing) transmitter sends TS1s with a Link Number (arbitrary, 0-31) and PAD for the Lane Number. The receiver listens for matching TS1s.

The LTSSM normally proceeds to Configuration.Linkwidth.Accept when the following condition is met:
  1. Two consecutive TS1s are received with Link Number matching that of the transmitted TS1s, and PAD for the Lane Number, on any lane.
It the above condition is not met after a 24ms timeout, the LTSSM returns to Detect and starts over.

Configuration.Linkwidth.Accept

The downstream-facing port must decide if it can form a link using the lanes that are receiving a matching Link Number and PAD for the Lane Numbers. If it can, it assigns sequential Lane Numbers to those lanes. For example, an x4 link can be formed by assigning Lane Numbers 0-3.

The LTSSM normally proceeds to Configuration.Lanenum.Wait when the following condition is met:
  1. A link can be formed with a subset of the lanes that are responding with a matching Link Number and PAD for the Lane Numbers.
An interesting question is how to handle a case where only some of the detected lanes have responded. Should the LTSSM wait at least long enough to handle a missed packet and/or lane-to-lane skew before exiting this state? (I don't actually know the answer, but to me it seems logical to wait for at least a few TS periods before proposing lane numbers.)

If the above condition isn't met after a 2ms timeout, the LTSSM returns to Detect and starts over.

Configuration.Lanenum.Wait

The transmitter sends TS1s with the Link Number and with each lane's proposed Lane Number. The receiver listens for TS1s with a matching Link Number and updated Lane Numbers.

The LTSSM normally proceed to Configuration.Lanenum.Accept when the following condition is met:
  1. Two consecutive TS1s are received with Link Number matching that of the transmitted TS1s and with a Lane Number that has changed since entering the state, on any lane.
Here the spec is more explicit that upstream-facing lanes may take up to 1ms to start echoing the lane numbers, to account for receiver errors or lane-to-lane skew. So (I think) the above condition is meant to be evaluated only after 1ms has elapsed in this state.

If the above condition isn't met after a 2ms timeout, the LTSSM returns to Detect and starts over.

Configuration.Lanenum.Accept

Here, there are three possibilities:
  1. The updated Lane Numbers being received match those transmitted on all lanes, or the reverse (if supported). The LTSSM proceeds to Configuration.Complete.
  2. The updated Lane Numbers don't match the those transmitted, or the reverse (if supported). But, a subset of the responding lanes can be used to form a link. The downstream-facing port reassigns lane numbers for this new link and returns to Configuration.Lanenum.Wait.
  3. No link can be formed. The LTSSM returns to Detect and starts over.
Normally, lane reversal (e.g. 0-3 remapped to 3-0) would be handled by the device if it supports the feature, and its upstream-facing port will respond with matching Lane Numbers. However, if the device doesn't support lane reversal, it can respond with the reversed lane numbers to request the host do the reversal, if possible.

Configuration.Complete

The transmitter sends TS2s with the agreed-upon Link and Lane Numbers. The receiver listens for TS2s with the same.

The LTSSM normally proceeds to Configuration.Idle when all of the following conditions are met:
  1. At least 16 TS2s have been transmitted after receiving one TS2, on all lanes.
  2. Eight consecutive TS2s have been received with the same Link and Lane Numbers as are being transmitted, on all lanes.
If the above condition isn't met after a 2ms timeout, the LTSSM returns to Detect and starts over.

Configuration.Idle

The transmitter sends Idle data symbols (IDL) on all configured lanes. The receiver listens for the same. Unlike Training Sets, these symbols go through scrambling, so this state also confirms that scrambling is working properly in both directions.

The LTSSM normally proceeds to L0 when all of the following conditions are met:
  1. At least 16 consecutive IDL have been transmitted after receiving one IDL, on all lanes.
  2. Eight consecutive IDL have been received, on all lanes.
If the above conditions aren't met after a 2ms timeout, the LTSSM returns to Detect and starts over.

L0

This is the golden normal operational state where the host and device can exchange actual data packets. The LTSSM indicates Link Up status to the upper layers of the stack, and they begin to do their work. One of the first things that happens after Link Up is flow control initialization by the Data Link Layer partners. Flow control is itself a state machine with some interesting rules, but that'll be for another post.

But wait...the link is still operating at 2.5GT/s at this point. If both link partners support higher data rates (as indicated in their Training Sets), they can try to switch to their highest mutually-supported data rate. This is done by transitioning to Recovery, running through the Recovery speed change substates, then returning to L0 at the new rate.

Recovery


Recovery is in many ways the most complex LTSSM state, with many internal state variables that alter state transitions rules and lead to circuitous paths through the substates, even for a nominal speed change. As with the other states, there are way too many edge cases to cover here, so I'll only focus on getting back to L0 at 8GT/s along the normal path. 

Also, since Configuration has been completed, it's assumed that Link and Lane Numbers will match in transmitted and received Training Sequences. If this condition is violated, the LTSSM may fail back to Configuration or Detect depending on the nature of the failure. For simplicity, I'm omitting these paths from the descriptions of each substate.

When changing speeds to 8GT/s, the link must establish equalization settings during this state. In the simplest case, the downstream-facing port chooses a transmitter equalization preset for itself and requests a preset for the upstream-facing transmitter to use. The transmitter presets specify two parameters, de-emphasis and preshoot, that modify the shape of the transmitted waveform to counteract the low-pass nature of the physical channel. This can open the receiver eye even with lower overall voltage swing:

Recovery.RcvrLock

This substate is encountered (at least) three times.

The first time this substate is entered is from L0 at 2.5GT/s. The transmitter sends TS1s (at 2.5GT/s) with the Speed Change bit set. It can also set the EQ bit and send a Transmitter Preset and Receiver Preset Hint in this state. These presets are requested values for the upstream transmitter to use after it switches to 8GT/s. The receiver listens for TS1s or TS2s that also have the Speed Change bit set.

The first exit is normally to Recovery.RcvrCfg when the following condition is met:
  1. Eight consecutive TS1s or TS2s are received with the Speed Change bit matching the transmitted value (1, in this case), on all lanes.
The second time this subtstate is entered is from Recovery.Speed, after the speed has changed from 2.5GT/s to 8GT/s. Now, the link needs to be re-established at the higher data rate. Transitioning to 8GT/s always requires a trip through the equalization substate, so after setting its transmitter equalization, the LTSSM proceeds to Recovery.Equalization immediately.

The third time this subtstate is entered is from Recovery.Equalization, after equalization has been completed. The transmitter sends TS1s (at 8GT/s) with the Speed Change bit cleared, the EC bits set to 2'b00, and the equalization fields reflecting the downstream transmitter's current equalization settings: Transmitter Preset and Cursor Coefficients. The receiver listens for TS1s or TS2s that also have the Speed Change and EC bits cleared.

The third exit is normally to Recovery.RcvrCfg when the following condition is met:
  1. Eight consecutive TS1s or TS2s are received with the Speed Change bit matching the transmitted value (0, in this case), on all lanes.

Recovery.RcvrCfg

This substate is encoutered (at least) twice.

The first time this substate is entered is from Recovery.RcvrLock at 2.5GT/s. The transmitter sends TS2s (at 2.5GT/s) with the Speed Change bit set. It can also set the EQ bit and send a transmitter preset and receiver preset hint in this state. These presets are requested values for the upstream transmitter to use after it switches to 8GT/s. The receiver listens for TS2s that also have the Speed Change bit set.

The first exit is normally to Recovery.Speed when the following condition is met:
  1. Eight consecutive TS2s are received with the Speed Change bit set, on all lanes.
The second time this substate is entered is from Recovery.RcvrLock at 8GT/s. The transmitter sends TS2s (at 8GT/s) with the Speed Change bit cleared. The receiver listens for TS2s that also have the Speed Change bit cleared.

The second exit is normally to Recovery.Idle when the following condition is met:
  1. Eight consecutive TS2s are received with the Speed Change bit cleared, on all lanes.

Recovery.Speed

In this substate, the transmitter enters electrical idle and the receiver waits for all lanes to be in electrical idle. At this point, the transmitter changes to the new higher speed and configures its equalization parameters. In PG239, this is done using the phy_rate and phy_txeq_X signals.

The LTSSM normally returns to Recovery.RcvrLock after waiting at least 800ns and not more than 1ms after all receiver lanes have entered electrical idle.

This state may be re-entered if the link cannot be reestablished at the new speed. In that case, the data rate can be changed back to the last known-good speed.

Recovery.Equalization

The Recovery.Equalization substate has phases, indicated by the Equalization Control (EC) bits of the TS1, that are themselves like sub-substates. From the point of view of the downstream-facing port, Phase 1 is always encountered, but Phase 2 and 3 may not be needed if the initially-chosen presets are acceptable.

In Phase 1, the transmitter sends TS1s with EC = 2'b01 and the equalization fields indicating the downstream transmitter's equalization settings and capabilities: Transmitter Preset, Full Scale (FS), Low Frequency (LF), and Post-Cursor Coefficient. The FS and LF values indicate the range of voltage adjustments possible for transmitter equalization.

The LTSSM normally returns to Recovery.RcvrLock when the following condition is met:
  1. Two consecutive TS1s are received with EC = 2'b01.
This essentially means that the presets chosen in the EQ TS1s and EQ TS2s sent at 2.5GT/s have been applied and are acceptable. If the above condition is not met after a 24ms timeout, the LTSSM returns to Recovery.Speed and changes back to the lower speed. From there, it could try again with different equalization presets, or accept that the link will run at a lower speed.

It's also possible for the downstream port to request further equalization tuning: In Phase 2 and Phase 3 of this substate, link partners can iteratively request different equalization settings and evaluate (via some implementation-specific method) the link quality. In a completely "known" link, these steps can be skipped if one of the transmitter presets has already been validated.

Recovery.Idle

This substate serves the same purpose as Configuration.Idle, but at the higher data rate (assuming the speed change was successful).

The transmitter sends Idle data symbols (IDL, 8'h00) on all configured lanes. The receiver listens for the same. These symbols now go through 8GT/s scrambling, so this state also confirms that 8GT/s scrambling is working properly in both directions.

The LTSSM normally returns to L0 when all of the following conditions are met:
  1. At least 16 consecutive IDL have been transmitted after receiving one IDL, on all lanes.
  2. Eight consecutive IDL have been received, on all lanes.
If the above conditions aren't met after a 2ms timeout, the LTSSM returns to Detect and starts over.

LTSSM Protocol Analyzer Captures

There are lots of places for the LTSSM to go wrong, and since it's running near the very bottom of the stack, it's hard to troubleshoot without dedicated tools like a PCIe Protocol Analyzer. In my tool hunt, I managed to get a used U4301B, so let's put it to use and look at some LTSSM captures.

Side note: Somebody just scored an insane deal on a dual U4301A listing that included the unicorn U4322A probe. If you're that someone and you want to sell me just the probe, let me know! I will take it in any condition just for the spare pins. Also, there is a reasonably-priced U4301B up right now if anyone's looking for one.

But anyway, my Frankenstein U4301B + M.2 interposer is still operational and can be used with the Keysight software to capture Training Sets and summarize LTSSM progress:


You can see the progression through Polling and Configuration, L0, Recovery, and back to L0. In Recovery, you can see the speed change and equalization loops, crossing through the base state of Recovery.RcvrLock three times as described above.

Looking at the Training Sequence traffic itself, the entire LTSSM takes around 9ms to complete in this example, with the vast majority of the time spent in the Recovery state after the speed change. Zooming in shows the details of the earlier states, down to the level of individual Training Sequences.


If any of the states transitions don't go as expected it's possible to look inside the individual Training Sequences to troubleshoot what conditions aren't being met. The exact timing and behavior varies a lot from device to device, though.

So you made it to L0...what next?

L0 / Link Up means the physical link is established, so the upper layers of the PCIe stack can begin to communicate across the link. However, before any application data (memory transactions) can be transferred, the Data Link Layer must initialize flow control. PCIe flow control is itself an interesting topic that deserves a separate post, so I'll end here for now!

Tuesday, August 22, 2023

PCIe Deep Dive, Part 3: Scramblers, CRCs, and the Parallel LFSR

This post continues an exploration into the inner workings of PCIe. The previous post presented a top-level view of the PCIe Controller as a memory bus extension, with discussion of the various overheads associated with wrapping memory transfers into serial data packets. In this post, I want go to the other extreme and look at one of the low-level logic mechanisms that PCIe depends on for reliable data transfer: the parallel Linear-Feedback Shift Register (LFSR). This mechanism efficiently introduces randomness required to ensure DC-balanced serial data, and to validate Transaction Layer Packets (TLPs) with a Cyclic Redundancy Check (CRC).

PCIe 3.0 Scrambler

PCIe signals are driven across AC-coupled differential pairs to increase immunity to noise. The transmitter and receiver may be on different boards, far apart from each other, with significant high-frequency ground offset between them. Adding series capacitors to the differential signal provides low-voltage level shifting capability to deal with this. But, this only works if the data coming across the link is DC-balanced over a data interval much shorter than the time constant formed by the AC coupling capacitor and termination resistor, which is typically 10⁴ to 10⁵ UI.

PCIe 1.0 and 2.0 use 8b/10b encoding to enforce DC balance. This encoding tracks the running disparity of the serial data stream and modifies 10b symbols (representing 8b data) to keep it in balance. This is also the encoding used in USB all the way up to USB 3.x Gen 1 (5Gbps), which is the same speed as PCIe 2.0. It's simple and deterministic, but it has a poor serial encoding efficiency of only 80% (8/10).

By contrast, PCIe 3.0 through PCIe 5.0 use 128b/130b encoding, where two sync bits are prepended to 128b data payloads to form 130b blocks. As discussed in the previous post, this has a much better serial encoding efficiency of 98.5% (128/130). However, the two sync bits are not sufficient to control running disparity with a 128b data payload. Instead, the data is sent through a scrambler, a Pseudo-Random Number Generator (PRNG) that remaps bits in a way that both the transmitter and receiver understand. The output stream is statistically DC-balanced for all real data.

The PCIe implementation of the PRNG for scrambling is as a Linear-Feedback Shift Register (LFSR). In the case of PCIe 3.0, the canonical implementation is a 23-bit shift register with strategically-placed XORs between some bits to instigate pseudo-randomness. The output of the shift register is then XORed with each data bit to generate the scrambled output. Each lane gets its own LFSR scrambler seeded with a different value.

This is simple logic, but it would need to run at 8GHz to be implemented in single-bit fashion like this. That's not really practical even in dedicated silicon, and is completely impossible using FPGA sequential logic. However, it's possible to parallelize the LFSR to any data width pretty easily. The key is in the name: the operation is linear, so the contributions of each bit of input data and the initial LFSR can be superimposed to generate each bit of output data and the final LFSR. This method of parallelizing the LFSR is covered very well at OutputLogic.com, with utilities to generate Verilog implementations of any LFSR and data width. I will only briefly describe the procedure here.

Using for example the 23-bit LFSR and a 32-bit data path (common for each PCIe 3.0 lane with a 250MHz PHY clock), there are a total of 23 + 32 = 55 bits that can contribute to the final LFSR and output data. Set each of those bits to one, and all other bits to zero, then run the LFSR forward by 32 steps, and record the contribution of each input bit to the output data and final LFSR. This creates a big table of bit contributions:

The full parallel operation is just the sum (in mod 2, so XOR) of contributions from each bit of input data and the initial LFSR. Each bit of the output data and final LFSR is the XOR combination of a specific set of input bits, with at most 55 contributing bits. On a Xilinx Ultrascale+ FPGA, wide XORs like this are easy to build using nested six-input LUTs. With two levels, you get 6² = 36 inputs. With three levels, 6³ = 216 inputs. Each level has a propagation time on the order of 1ns, so even nested three deep it's capable of running at 250MHz.

Link CRC

Another use for the parallel LFSR is in the generation and checking of the Link CRC, a 32-bit value used for error detection in TLPs. The LCRC acts like a signature for the bits in the TLP and the value received must match the value calculated by the receiver, or the TLP is rejected. The LCRC mechanism uses a 32-bit LFSR (with XOR positions described by the standard CRC-32 polynomial 0x04C11DB7), seeded to 0xFFFFFFFF at the start of each TLP. At the end of the TLP, the 32-bit LFSR value is mapped to the packet's LCRC through some additional bit manipulation.

The LCRC operation can be parallelized in the same way as the Scrambler. The main differences are that the data is unmodified by the LCRC operation and that the data does contribute to the XOR sum of the next LFSR value. (This is what drives the LCRC to a unique value for each TLP.) In table form, this just changes which quadrants have XOR contributions:

Although there are fewer rows to handle, there are now 128 + 32 = 160 columns. The LCRC is calculated on packets before they are striped across all lanes. So for a PCIe 3.0 x4 link, instead of four 32-bit data paths as in the Scrambler, there is just one 128b data path operating at 250MHz. Any of these bits and any of the 32 bits of the previous clock cycle's LFSR might contribute to the XOR for each bit of the new LFSR. This isn't a problem, though, since three levels of LUT6 can handle up to 216 XOR inputs at 250MHz, as described above.

Where things do get a little complicated is in data alignment. TLP lengths are multiples of one Double Word (DW), or 32b. So, even without considering framing, 3/4 of the possible lengths would not fit evenly into 128b data beats. Each TLP is also prepended with a 32-bit framing token (STP), the latter half of which is fed into the LCRC computation as well. So in fact all cases will involve a partial data beat.

To handle this with a 128b parallel LFSR, the LCRC mechanism must get clever. Based on the length of the packet (which is known once the STP is parsed), the 128b data window can be shifted such that the last data beat will be aligned with the end of the packet. This ensures that the final LFSR value can be used directly to generate the LCRC. Then, the first 128b data beat is padded with zeros up to the middle of the STP token, where the LCRC computation begins. (In the case of a 3DW header with no data, the first and last data beat are the same.) This creates four possible alignment cases that repeat based on the length of the TLP:

Depending on the alignment case, the LFSR is seeded with a different value that accounts for the extra {16, 48, 80, 112} zeros padded onto the first data beat. These seed values are derived by seeding the reference single-bit implementation of the LFSR with 0xFFFFFFFF, then running it backwards for {16, 48, 80, 112} steps with zero data bits. With these seeds, the 128b parallel LFSR can be run on the zero-padded data and give the same final result as the single-bit implementation on the original data.

An interesting follow-up issue is how to handle back-to-back TLPs. Padding the first LCRC beat with zeros potentially means more than a 1:1 bit rate for the LCRC engine compared to the packet data, if there is no idle time between packets. An easy workaround could be to run two LCRC engines that take turns processing packets, although this means twice the logic area. The details are likely to vary in every implementation, so it's not something I will get into here.

Conclusion

The last couple of posts were setup and background for PCIe in general. This one was more of a microscopic view of a particular logic mechanism key to several aspects of PCIe, and how it can be implemented efficiently on modern FPGAs. There are many such interesting logic puzzles to solve in gateware implementations of PCIe, and I wanted to give just one example at the lowest level I understand. I may cover other logic-level tricks in future posts, but first I think it will be more interesting to introduce what might be the scariest part of PCIe: the Link Training and Status State Machine (LTSSM). To be continued...

Sunday, June 11, 2023

PCIe Deep Dive, Part 2: Stack and Efficiency

Before getting too caught up in the inner workings of PCIe, it's probably worth taking a look at the high-level architecture - how it's used in a system and what the PCIe controller stack looks like. PCIe is fundamentally a bi-directional memory bus extension: it allows the host to access memory on a device and a device to access memory on the host.

When a PCIe link is established between the host and a device, the host assigns address space(s) that it can use to access device memory. Optionally, it can also grant permission for the device to access portions of host system memory. In that way, the host and device memory buses are effectively connected. Each PCIe link is a point-to-point connection, but they can be combined with switches into a fabric with many devices (endpoints).

Different types of devices utilize the memory bus bridging capability of PCIe in different ways. For example, an NVMe storage device exposes only a small amount of device memory (the NVMe Controller Registers) that the host uses to configure the device and inform it when new commands have been submitted. All actual data transfer is done by the storage device reading from or writing to host memory. In this way, the NVMe storage device acts as a DMA controller between host memory and non-volatile storage.

NVMe storage device usage of PCIe link (completion steps omitted).

One might ask why the memory buses can't just be directly connected. For one, a native memory interface such as AXI is very wide: it might have 64-256b of data, 32-64b of address, and a bunch of control signals. This works fine inside a chip, but going from chip-to-chip, board-to-board, or across a cable, it's too many signals. The PCIe Controller encapsulates the data, address, and control signals from the memory bus into packets that can be sent across a fast serial link over a small number of differential pairs. This standard interface also allows bridging memory buses with different native interfaces, speeds, and latencies.

With that context in mind, we can look at the PCIe Controller stack, and what role each layer plays in bridging memory transactions between the host and device as efficiently and reliably as possible. The PCIe specification defines three layers: the Transaction Layer (TXL), the Data Link Layer (DLL), and the Physical Layer (PHY). These layers each have a transmit and a receive side. From the point of view of the host, the stack looks like this:

Memory transactions from the host to the device are packaged by the TXL into a Transaction Layer Packet (TLP) with a header containing the address and other control information. The DLL prepends a framing token (STP) and appends a CRC to the TLP to create a Link Packet. This is then split into lanes and serialized by the PHY. The process happens in reverse for memory transactions from device to host, to go from serialized Link Packets back to host memory transactions.

In practice, many architectures (including Ultrascale+) break the PHY into two parts: an upper Media Access Control (MAC) layer and a lower layer still called the PHY. These are connected by the standard PHY Interface for PCI Express (PIPE), published by Intel. It's also useful to add an explicit AXI-PCIe bridge layer above the TXL when the native memory bus is AXI, as it is in the Ultrascale+ architecture. This would be an example of what some references call the Application Layer. Expanded this way, the stack looks like this:

Different Xilinx IPs cover different layers of the stack, as shown above. PG239 (PCI Express PHY) is a low-level (PIPE down) PCIe PHY wrapper for the GTH/GTY serial transceivers. PG213 (UltraScale+ Devices Integrated Block for PCI Express) covers the PCIE4 hardware block that includes the TXL, DLL, and MAC layers, and interfaces to the PHY via PIPE. And PG194 (AXI Bridge for PCI Express Gen3 Subsystem) includes the AXI-PCIe bridge layer on top of the PCIE4 hardware block and PHY. (For Ultrascale+, this is technically implemented as a configuration of PG195, but the relevant documentation is still in PG194.)

All of these Xilinx IPs are included in Vivado at no additional cost, but not every device has the PCIE4 block(s) needed to instantiate PG213 or PG194/PG195. For the Zynq Ultrascale+ line, the product tables show how many PCIe lanes are supported by integrated PCIE4 blocks for each device. In general, the larger and more expensive chips have more available PCIe hardware. But there are exceptions like the ZU6xx, ZU9xx, and ZU15xx, which have none. These can still instantiate PG239, but require a PCIe soft IP to implement the rest of the stack.

Each layer communicates with the next through a data bus that's sized to match the speed of the link. The example above is for a Gen3 x4 link, which supports 32Gb/s of serial data in each direction. In the Ultrascale+ implementation, the 250MHz clock for the 128b internal datapath is derived from the PCIe reference clock, so all layer logic is synchronous with the PHY. This seems like a perfectly-balanced data pipeline, with 32Gb/s of data coming in and going out in each direction. But in practice, overheads limit the maximum link efficiency.

First, PCIe Gen3 uses 128b/130b encoding: for each 128b serial data payload on each lane, a 2b sync header is prepended to create a 130b block. The sync bits tell the receiver whether the block is data or an Ordered Set (control sequence). In order to make room for the sync bits, PIPE requires one invalid data clock cycle in every 65-clock period.

The period for skipping data on the 250MHz side of the PHY is 260ns, while the period for a 130b serial output block is only 16.25ns, so the PHY must implement buffering and a SERDES gearbox to make this work. The effect of the sync bits can be seen in the protocol analyzer raw data, where there are occasionally 1ns gaps in the timestamp. (The full serial data rate including sync bits would be exactly 4B/ns.) These leap-nanoseconds add up to an overall efficiency of 98.5% (64/65), as can be seen by plotting the starting timestamp of each block.

Next, transmitters are required to periodically stop transmitting data and send a SKP Ordered Set (SKP OS), which is used to compensate for clock drift. This should happen every 370-375 blocks, and the SKP OS takes one block to transmit. Stopping the data stream also requires sending an EDS token, which may require one additional block depending on packet alignment. But even in a worst-case scenario this still represents about 99.5% (368/370) efficiency.

We can see the EDS tokens and SKP OS at regular intervals in both directions on the protocol analyzer. Interestingly, the average interval in the Host-to-Device direction is on the short side (365 blocks). Maybe it's not accounting for the 64/65 PIPE TxDataValid efficiency described above. The interval is controlled by the MAC layer, which is in PG213 in this case, so I don't think it's something that can be adjusted. The Device-to-Host direction is spot-on in this case, with a 371-block interval.

DLLs also exchange Data Link Layer Packets (DLLPs) for Ack/Nak and flow control of TLPs. These packets are short (6B), but they must be transmitted with enough regularity to meet latency requirements and ensure receiver buffers don't overflow. There's no simple rule for when these are transmitted, only a set of constraints based on the link operating conditions. To get a feel for the typical link efficiency impact of DLLP traffic, we can look at a 100μs section of bulk data transfer and add up the combined contribution of all DLLPs:

In total, there were 237 DLLPs transmitted in the Host-to-Device direction. Since the packets must be lane-0-aligned on an x4 link, they actually occupy 8B each. This is 1896B of overhead for nearly 400000B of data, again around 99.5% efficiency. This example is mostly unidirectional data transfer from host to device, though. If the device was also sending data to the host, there would be far more Acks going in the Host-to-Device direction. If the Ack count were similar to that of the Device-to-Host direction in this example, the efficiency would drop to around 95%.

Lastly, the biggest overhead is usually for TLP packetization. The TLP header is either 12B or 16B. The DLL adds a 4B framing token (STP) and a 4B Link CRC (LCRC). The payload size can be as high as 4096B, although it's limited to 1024B in the Ultrascale+ implementation (PG213). It's also common for devices to limit the max payload size to 128B, 256B, or 512B, depending on the capability of their PCIe Controller. This gives a range of 84.2% (128/150) to 98.1% (1024/1044) for packetization efficiency with optimally-sized transfers on Ultrascale+ hardware.

In the example capture, data is transferred from host to device in 128B-payload TLPs:

The packet has 20B of overhead for 128B of data, which would be an 86.5% efficiency. However, the host controller also inserts 12B of logical idle (zeros) to align the next STP token to the start of a block. This isn't required by the PCIe protocol, but may be inherent in the implementation of the controller. For this payload size, it drops the efficiency to 80% (128/160). 

That packetization efficiency dominates the overall link efficiency, which hovers between 75% and 80% during periods of stable data transfer:

In this case, increasing the max payload size would have the most positive impact on throughput. PG213 can go up to 1024B, but the device controller may be the limiting factor.

In PCIe 6.0, a big change will be introduced that removes sync bits and consolidates DLLPs, framing tokens, and the LCRC into a fixed 20B overhead in each 256B unit (called a FLIT, for Flow Control unIT). This implies a fixed 92.2% efficiency for everything other than the SKP OS and TLP header overhead, and also a fixed latency for Ack/Nak and flow control, a nice simplification.

But for now we're still in the realm of PCIe Gen3, where we can expect an overall link efficiency in the 75-95% range, depending on the variety of factors described above as well as details of the controller implementations.

The packetization and flow control functions described above are the domain of the Transaction Layer and Data Link Layer, but there are also some really interesting functions of the MAC and PHY layers that facilitate reliable serial data transfer across the physical link. These will have to be topics for one or more future posts, though.