With the front wheel drive complete and the steering wheel control board working, it's finally time for a first test drive:
I've been waiting over a year to see if this mountain bike air shock suspension setup would work, and it looks like it does! I haven't done any tuning on it besides setting the preload, but it handles my pretty beat up parking lot nicely, absorbing bumps that would have broken tinyKart in minutes. The steering linkage also seems okay, with good travel and minimal bump steer. There are still some minor mechanical improvements I want to make, but it's nice to see the suspension concept in action after all this time.
I started with front wheel drive so I could see if the motor drive had any Flame Emitting Transistors, but happily it did not. It's the same gate drive design that I use on everything and it always just works, so I shouldn't be surprised anymore. But I am asking a lot of the FDMT80080DC FETs (just one per leg), so I'm working my way up to 120A (peak, line-to-neutral) phase current incrementally. The above test is at 80A and the FETs seem happy, although the motors do get pretty warm already. They might need some i²t thermal protection to handle 120A peaks.
Synchronous Data Logging
One of the early lessons I learned in building motor drives is to always log data. Nothing ever works perfectly on the first try, but having data logging built in from the start is the best way I know of to quickly diagnose problems. A lot of the stuff that happens in a motor drive is faster than typical data logging can capture, but a lot of it is also periodic. By synchronizing the data collected to the rotor electrical angle, its possible to reveal detailed periodic signals even with relatively low frequency (50Hz) logging to an SD card. As a quick example, here's a standard data logger plot of motor phase currents over time:
Phase current vs. time, pretty boring. |
This type of plot shows the drive cycle, with periods of high current during acceleration (or braking) and periods of near zero current when coasting or stopped. And it shows that phase currents sometimes exceed 100A even with an 80A command. But a plot of Q-axis (torque-producing) current, which is already synchronous, could give a better summary of this information. The time resolution (40ms) isn't fine enough to show the AC signals.
However, each set of three phase currents is also stamped with a rotor electrical angle measured at the same time (within about 10 microseconds). Cross-plotting the phase currents against their angle stamp, instead of against time, reveals a much more interesting view of the data:
Same data, different meaning. |
Now it's possible to see the three phase current waveforms separated by 120edeg. The peaks are at 0º (Phase A), 120º (Phase B), and -120º (Phase C). There are also negative peaks at the same angles, where braking is occurring. Most interestingly, the shape of the current waveforms at 80A peak is revealed to be asymmetric and far from sinusoidal.
The angular resolution of this type of waveform capture is only limited by the angle measurement, regardless of logging frequency. By contrast, the fastest it would be possible to log a continuous waveform would be at the PWM frequency (23.4kHz, in this case), which gives an speed-dependent angular resolution of 11.3edeg per 1000rpm. It would become difficult to resolve the shape of the current waveform at high speeds. There's always a trade-off, though: Synchronizing low-speed log data with angle stamps is only able to show the average shape of long-term periodic signals. It would not catch a glitch in a single cycle of the phase currents.
While the phase current shape is interesting, the position of the peaks is just a consequence of the current controller. Zero electrical degrees is defined (by me, arbitrarily) as the angle at which Phase A's back EMF is at a peak. The current controller aligns the Phase A current with the Phase A back EMF for maximum torque per amp. So the phase current plot shows that the current controller is doing its job. This information is also captured by the already-synchronous Q-axis and D-axis current signals:
Q-axis and D-axis current plotted against time. |
The Q-axis current represents torque-producing current, aligned with the back EMF, and is the current being commanded by the throttle input. The D-axis current is field-augmenting (or weakening, if negative) current and doesn't contribute to torque production. In this case, the current controller seeks to hit the desired Q-axis current and keep the D-axis current at zero. It does this by varying the voltage vector applied to the motor. More on this later. The Q-axis and D-axis currents are rotor-synchronous values, so they already convey the magnitude and phase of the phase currents, just not the actual shape.
All of this is based on the assumption that the measured rotor angle is correct, i.e. properly defined with respect to the permanent magnets. On this kart, I'm using magnetic rotary sensors mounted to the motor shafts that communicate the rotor angle to the motor controller via SPI and optically-isolated emulated Hall sensor signals. But it's also possible to measure the rotor angle with a flux observer, as long as the motor is spinning sufficiently fast. I have this running in the background, logging flux estimates for each phase.
Again, plotting flux against time doesn't give a whole lot of information. It's interesting to see the observer converge as speed increases from zero at the start, and the average amplitude of about 5mWb is consistent with the motor's rpm/V constant and measured back-EMF. But the real value of this data comes from cross-plotting against the sensor-derived rotor angle:
Again, plotting flux against time doesn't give a whole lot of information. It's interesting to see the observer converge as speed increases from zero at the start, and the average amplitude of about 5mWb is consistent with the motor's rpm/V constant and measured back-EMF. But the real value of this data comes from cross-plotting against the sensor-derived rotor angle:
Cross-plotting against sensor-derived electrical angle shows substantial offset between the two motors. |
The flux from Phase A should cross zero when its back EMF is at its peak, i.e. at an electrical angle of 0º in my arbitrarily-defined system. So, the front-right motor is more correct. The front-left is offset by about 30-45edeg, which is enough to start causing significant differences in torque. Indeed I had noticed some torque steer during the first test drives, which is what prompted me to do the sensor/sensorless angle comparison in the first place.
Since I have all three phases of flux, I can estimate the flux vector angle with some math and compare it to the sensor-derived rotor angle:
Digging into flux angle offset of the front-left motor a little more. |
Sure enough, I was able to grab the rotor of the front-left motor and twist with hand strength only (< 5Nm) enough to make the shaft move relative to the rotor can. It only moved about 5º, but that's 35edeg, which is about the offset I had been seeing in the data. The press fit had failed and it was relying on back-up set screws on flats to keep from completely slipping. I suspect this won't be the last motor to fail in this way. I pressed out the shaft, roughed up the surface a little, and pressed it back in with some Loctite 609. I also drilled a hole in the back that can potentially be tapped as a back-up plan. And finally I recalibrated everything and marked the shaft so I'll know if it slips again.
After a few more test drives, it looks like it's holding. The front-left flux vs. sensor-derived angle looks much closer to the correct phase as well:
Phase A flux vs. sensor-derived angle after shaft rework. |
There's still a +/-10edeg offset from nominal, which could be from calibration accuracy or static biases like normal shaft twisting. It might be worth investigating more, but it's not enough offset to create any noticeable torque steer on the front wheel drive, so I'm satisfied for now. I will preemptively do the same rework on the remaining three motor shafts.
One other interesting cross-plot to look at is the Q- and D-axis voltage as a function of speed. I mentioned above that the current controller attempts to align the current vector with the back EMF vector by manipulating the voltage vector, the basis of field-oriented control. Due to the electrical time constant (L/R) of the motor, the voltage must lead the back EMF by a varying amount. This shows up as negative D-axis voltage increasing in magnitude with speed (and current).
Jitter 3D plot of the voltage vector operating curve. |
At 80A and 2500erad/s (~3400rpm and ~27mph), the voltage vector is already leading by 45º, with 12V on both axes. This gives me a rough estimate for the motor's synchronous inductance.
Along with the measured resistance (32mΩ) and flux amplitude (5mWb), this is all that's required for a first-order motor model, and thus a torque-speed curve. Running this through the gear ratio, the force-speed curve at the ground should look something like:
The inductance has a large impact on the maximum speed at which 120A can be driven into the motor in-phase with the back EMF. This determines the maximum power, since above this speed the force drops off faster than the speed increases. The top speed is wherever on the curve the drag forces equal the motor force, probably in the 40-45mph range. This is all without using third harmonic injection, which gives an extra 15% voltage overhead (for the cost of higher peak battery power, of course). If I do turn that on, it will probably come with a gear ratio change to put that extra 15% toward more torque, not more speed.
That's all I wanted to check before building up the second motor controller for the rear wheel drive. I'm very eager to see how it handles with 4WD, and how close to this force-speed curve I can actually get.
Hi Shane,
ReplyDeletenice plots, are these from matlab or with which tool are u generatin these?
All but the last one are from Scilab. The point clouds are using the param3d() plot function. The last one, the force/speed curve, is from a MathCAD worksheet, which makes it easier to deal with unit conversions.
DeleteI enjoy finding interesting visualizations of the data, especially if it helps troubleshoot a problem!